

Concrete	Pictorial	Abstract
	Addition	1
	Foundation Stage and Key Stage 1	
Combining two parts to make a whole 4+3=7	A group of 3 combined with a group of 4 makes 7	4+3=7 (four is a part, 3 is a part and the whole is 7) You can show this on the 'cherry model' or the model'. 7 4 3 'bar
Counting on using cubes and number lines 4+2=6	3+5=8	The abstract number line. What is 2 more than four? What is the sum of 4 and 2? What is the total of 4 and 2?
Regrouping to make 'friendly' 10 by using 10s frames and counters 6+5=11 ("a 4 and a 1 live inside 5 and 6 add 4 will make a friendly 10" so 6+5 becomes 10+1)	Children to draw the 10s frames and counters	9+6=15 Inside 6 lives a 1 and a 5 so we can make a friendly 10 with the 9 and 1. 9+6 5 10+5=15

Hemingford Grey Calculation Policy 20+73 20+73 TO + O using dienes (T = tens and O = ones) 41+8 20 0 Ones Tens + 70 3 . . . 90 3 TO + TO using dienes 57+25 57+25 57+25 Tens Ones Tens Ones 50 1111 7 + || + 20 5 12 80 2 10 7 + 5 = 12 but we need to put the 2 in the ones column and move the 10 to the tens column. 50+20=70 and then we must add the extra 10 to make 80.

etc

 \odot

 \odot

100s

4-3=1

Hemingford Grey Calculation Policy Key Stage 2 This written method can be used for larger Use of place value counters to add HTO + HTU Children to represent the counters: If they are problem solving, draw a bar numbers. Taking out some of the digits can be 243+368 (the 10 ones have been moved to model to represent the problem. used for further challenge. 243 make 1 ten. Then the 10 tens make another Θ \odot 100) (1) 00 0000 +368 0000 611 000 0000 1 1 000 0000 0000 2 368 243 ?=243+368 1s 10s Pictorial Abstract Concrete Subtraction Foundation Stage and Key Stage 1 Children to draw the concrete resource and 4-3 Physically taking away or removing objects from a whole. cross it out. ?= 4-3 4 3 ? Use of the bar model ×

Hemingford Grey SCHOOL	Hemingford Grey Calculation Policy	Hemingford Grey SCHOOL
Counting back (using a number line or track or cubes) 6 - 2		
Find the difference (using cubes, Cuisenaire rods, or other objects)	Children to draw the concrete resources. Find the difference between 9 and 5 XXXXXXXX XXXXX Use the model:	Find the difference between 8 and 6 8-6, the difference is?
Making "friendly 10" using ten frames. 14-5 14-5 14-5= 14-4=10 (as inside 5 lives a 4 and a 1) 10-1=9	Children to represent the calculation pictorially. 14-5 Cross out the 4 first to leave a 10 then cross out the 1 from the 10.	14-5=9 can be represented in the bar model. 14 9 5 Children to represent different ways they have solved the calcuation.

Key Stage 2						
Column Method using counters. 234-88	Children's own drawing of counters in a place value chart.	With exchanging: 932 – 457 becomes 9 3 2 - 4 5 7 4 7 5 Answer: 475				
Concrete	Pictorial	Abstract				
	Multiplication					
	Foundation Stage and Key Stage One					
Repeated grouping or repeated addition.	Children to represent the practical	4x3				
3 times 4, 3 lots of 4 or 3 groups of 4	resources as a picture. XX XX XX XX XX XX Use the bar model:	4+4+4				

Hemingford Grey Calculation Policy Use arrays to illustrate commutativity. Children to draw the arrays and turn them Children to be able to use an array to write a 2x5=5x2 round so they can see they represent the range of calculations. same total. 2x5 5x2 2x5=10 5x2=10 **N N** 2+2+2+2+2=10 5+5=10 Partition to multiply. (using dienes or place **Children represent this pictorially** 12 x 3=36 value counters) 12 x 3 (12 "3 times" or 3 groups of 12) 12x3 10 X 3 = 30 tens ones 12 36 2 6 30 +X 3 = 2 CJ = CJ III III III I = CJ II *** 30 6

Hemingford Grey SCHOOL			Jemingford Grey SCHOOL
	Hemingford Grey Calculation Policy	Long multiplication 6 x 124, then 20 x 124 1 2 4 x 2 6 -7 4 4 2 -4 8 0 3 2 2 4 1 1 Answer: 3224	124 × 26 becomes 1 2 1 2 4 × 2 6 7 4 4 2 4 8 0 3 2 2 4 1 1 Answer: 3224

SCHOOL	Hemingford Grey Calculation Policy	SCHOOL
Concrete	Pictorial	Abstract
	Division	
	Foundation Stage and Key Stage 1	
6 shared between 2. Sarah has 6 cubes and she shares them equally between herself and her friend Jo. How many do they have each?	6 shared into 2 groups. XXX XXX	6÷2=3 The bar model could be presented and the question asked: What's the calculation? 6 3 3 3
Understanding division as repeated grouping and subtracting. $6 \div 2$	There are 6 apples altogether but only 2 apples fit in each bag. How many bags do I need for all the apples? 6 divided into groups of 3 with 2 in each group. XX XX XX	6÷2 3 groups of 2 6 2 2 2 2
0 I 2 3 4 5 6 Заточря Using a beadstring: Present children with a meaningful context		

Hemingford Grey SCHOOL	Hemingford Grey Calculation Policy	Hemingford Grey SCHOOL
Each table in the picnic area could seat 5 children. Fifteen children were going to the picnic. How many tables would they need? 15÷5=3		Please note the links between ÷ and x should be constantly reinforced. This can be done through the triangle model: The core fact is 3x4=12 but we can derive a division fact from this. 12÷4=3 (the inverse) and
Division with remainders 7÷2	0000	12÷3=4 3 12 7÷2=3r1

When I put 536 into groups of 4, I can see that there is 1 group of hundreds, 3 groups of tens and 4 groups of ones in 536. There are 100 + 30 + 4 groups of 4 in 536. Each group will get 1 hundred (100), 3 tens (30) and 4 ones (4). 134 x 4 = 536 536 ÷ 4 = 134

			Hemir						ingford Grey
			SC	CHOO	L		Hemingford Grey Calculation Policy	S	CHOOL
Div	vision	as sha	aring u	sing p	lace value co	unters	Children represent the counters pictorially	Long Division	
eq The bee	This is a division calculation. It is 536 shared equally by 4. The counters represent 536 and they have been shared equally into the 4 boxes which were empty at the beginning. I want to know					ive hich		$432 \div 15 \text{ becomes}$ $1 5 \boxed{4 3 2}$ $3 0 0$ $1 3 2$	$432 \div 15 \text{ becomes}$ 2 8 1 5 4 3 2 2 8 1 5 1 5 1 1 5 1 1 1 1 1 1 1 1 1 1
						how		1 2 0	$\frac{3 \ 0 \ 0}{1 \ 3 \ 2} \ \frac{15 \times 20}{1 \ 3 \ 2}$
		1	3	4				1 2	1 2 0 ^{15×8}
	4	5	¹ 3	¹ 6					1 2
		-						432 ÷ 15 becomes ²	$\frac{12^{-1}}{15^{-1}} = \frac{4}{5}$
								2 8 . 8	Answer: 28 $\frac{4}{5}$
								1 5 4 3 2 0	
ma	iny in	eacn g	group.					$\begin{array}{c c} 3 & 0 \\ \hline 1 & 3 & 2 \end{array}$	
								Answer: 28-8	