Hemingford Grey Calculation Policy

Concrete	Pictorial	Abstract
Addition		
Foundation Stage and Key Stage 1		
Combining two parts to make a whole $4+3=7$	A group of 3 combined with a group of 4 makes 7	4+3=7 (four is a part, 3 is a part and the whole is 7) You can show this on the 'cherry model' or the 'bar model'.
Counting on using cubes and number lines 4+2=6	$3+5=8$	The abstract number line. What is $\mathbf{2}$ more than four? What is the sum of 4 and 2? What is the total of 4 and 2 ?
 Regrouping to make 'friendly' 10 by using 10s frames and counters 6+5=11 ("a 4 and a 1 live inside 5 and 6 add 4 will make a friendly $10^{\prime \prime}$ so $6+5$ becomes $10+1$)	Children to draw the 10s frames and counters	9+6=15 Inside 6 lives a 1 and a 5 so we can make a friendly 10 with the 9 and 1. $\begin{aligned} & (9+6 \\ & 1 \leq 5 \\ & 10+5=15 \end{aligned}$

Hemingford Grey Calculation Policy
20+73

Hemingford Grey
SCHOOL

Hemingford Grey Calculation Policy

Key Stage 2

Use of place value counters to add HTO + HTU etc
243+368 (the 10 ones have been moved to make 1 ten. Then the 10 tens make another

100 s

Counting back (using a number line or track or cubes) $6-2$		
Find the difference (using cubes, Cuisenaire rods, or other objects)	Children to draw the concrete resources. Find the difference between 9 and 5 XXXXXXXXX XXXXX Use the model:	Find the difference between 8 and 6 8-6, the difference is?
Making "friendly 10" using ten frames. 14-5 14-5= 14-4=10 (as inside 5 lives a 4 and a 1) 10-1=9	Children to represent the calculation pictorially. 14-5 Cross out the 4 first to leave a 10 then cross out the 1 from the 10.	14-5=9 can be represented in the bar model. Children to represent different ways they have solved the calcuation.

Hemingford Grey Calculation Policy

Hemingford Grey SCHOOL

Hemingford Grey Calculation Policy

Key Stage 2

Key Stage 2		
Column Method using counters. 234-88 (the red counters represent ones, the yellow are tens and the green are hundreds. One of the tens is exchanged for 10 ones)	Children's own drawing of counters in a place value chart.	
Concrete	Pictorial	Abstract
Multiplication		
Foundation Stage and Key Stage One		
Repeated grouping or repeated addition. 3 times 4,3 lots of 4 or $\mathbf{3}$ groups of 4	Children to represent the practical resources as a picture. $\begin{array}{lll} \text { XX XX XX } \\ \text { XX XX XX } \end{array}$ Use the bar model:	$\begin{aligned} & 4 \times 3 \\ & 4+4+4 \end{aligned}$

Hemingford Grey Calculation Policy
SCHOOL

Use arrays to illustrate 2x5=5x2	tativity.	Children to draw the arrays and turn them round so they can see they represent the same total. $2 \times 5 \quad 5 \times 2$	Children to be able to use an array to write a range of calculations. $\begin{aligned} & 2 \times 5=10 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 5+5=10 \end{aligned}$
Partition to multiply. (using dienes or place value counters) 12×3 (12 " 3 times" or 3 groups of 12)		Children represent this pictorially 12×3	$12 \times 3=36$
	ones	$30+6=36$	
306			

Hemingford Grey SCHOOL

Hemingford Grey Calculation Policy
Key Stage 2

Hemingford Grey Calculation Policy

Hemingford Grey SCHOOL

Hemingford Grey Calculation Policy

Foundation Stage and Key Stage 1

Hemingford Grey Calculation Policy

| Each table in the picnic area could seat 5
 children. Fifteen children were going to the
 picnic. How many tables would they need?
 $15 \div 5=3$ | Please note the links between \div and x should be
 constantly reinforced. This can be done
 through the triangle model: |
| :--- | :--- | :--- | :--- |
| The core fact is $3 \times 4=12$ but we can derive a | |
| division fact from this. | |

Key Stage 2

Division as sharing using place value counters
This is a division calculation. It is $\mathbf{5 3 6}$ shared equally by 4.
The counters represent 536 and they have been shared equally into the 4 boxes which were empty at the beginning. I want to know how

Children represent the counters pictorially
Long Division $432 \div 15$ becomes
1

5 | | 2 | 8 | r 12 |
| :--- | :--- | :--- | :--- |
| 4 | 3 | 2 | |
| 3 | 0 | 0 | |
| 1 | 3 | 2 | |
| 1 | 2 | 0 | |
| | 1 | 2 | |

$432 \div 15$ becomes

		2	8
1	5	4	3

$\mathbf{3}$	$\mathbf{0}$	$\mathbf{0}$	5×20
$\mathbf{1}$	$\mathbf{3}$	$\mathbf{2}$	
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{0}$	5×8
	$\mathbf{1}$	$\mathbf{2}$	

$\frac{12}{15}=\frac{4}{5}$
$432 \div 15$ becomes
1

5 | | | 2 | 8 | 8 |
| :---: | :---: | :---: | :---: | :---: |
| 4 | 3 | 2 | 0 | |
| 3 | 0 | \downarrow | | |
| 1 | 3 | 2 | | |
| 1 | 2 | 0 | \downarrow | |
| | 1 | 2 | 0 | |
| | 1 | 2 | 0 | |
| | | | 0 | |

Answer: $28 \frac{4}{5}$

SCHOOL
many in each group.

